Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Metabolomics ; 19(4): 41, 2023 04 15.
Article in English | MEDLINE | ID: covidwho-2304970

ABSTRACT

INTRODUCTION: The impact of maternal coronavirus disease 2019 (COVID-19) infection on fetal health remains to be precisely characterized. OBJECTIVES: Using metabolomic profiling of newborn umbilical cord blood, we aimed to investigate the potential fetal biological consequences of maternal COVID-19 infection. METHODS: Cord blood plasma samples from 23 mild COVID-19 cases (mother infected/newborn negative) and 23 gestational age-matched controls were analyzed using nuclear magnetic spectroscopy and liquid chromatography coupled with mass spectrometry. Metabolite set enrichment analysis (MSEA) was used to evaluate altered biochemical pathways due to COVID-19 intrauterine exposure. Logistic regression models were developed using metabolites to predict intrauterine exposure. RESULTS: Significant concentration differences between groups (p-value < 0.05) were observed in 19 metabolites. Elevated levels of glucocorticoids, pyruvate, lactate, purine metabolites, phenylalanine, and branched-chain amino acids of valine and isoleucine were discovered in cases while ceramide subclasses were decreased. The top metabolite model including cortisol and ceramide (d18:1/23:0) achieved an Area under the Receiver Operating Characteristics curve (95% CI) = 0.841 (0.725-0.957) for detecting fetal exposure to maternal COVID-19 infection. MSEA highlighted steroidogenesis, pyruvate metabolism, gluconeogenesis, and the Warburg effect as the major perturbed metabolic pathways (p-value < 0.05). These changes indicate fetal increased oxidative metabolism, hyperinsulinemia, and inflammatory response. CONCLUSION: We present fetal biochemical changes related to intrauterine inflammation and altered energy metabolism in cases of mild maternal COVID-19 infection despite the absence of viral infection. Elucidation of the long-term consequences of these findings is imperative considering the large number of exposures in the population.


Subject(s)
COVID-19 , Fetal Blood , Pregnancy , Infant, Newborn , Female , Humans , Fetal Blood/chemistry , Metabolomics/methods , Fetus/metabolism , Prenatal Care
2.
Bull Exp Biol Med ; 173(4): 523-528, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2007182

ABSTRACT

The study included umbilical cord blood samples (n=64) intended for cryogenic storage of hematopoietic stem cells and obtained from patients with a history of mild and moderate forms of COVID-19 during pregnancy. The control group was composed of samples (n=746) obtained from healthy women in labor. A comparative analysis of the volume of cord blood collected, the total leukocyte count, the relative and absolute content of cells with the CD34+/CD45+ phenotype revealed no significant differences between the groups.


Subject(s)
COVID-19 , Fetal Blood , Antigens, CD34 , Female , Fetal Blood/chemistry , Hematopoietic Stem Cells , Humans , Pregnancy
3.
Cell Prolif ; 54(9): e13091, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1320384

ABSTRACT

OBJECTIVES: Recent studies have shown the presence of SARS-CoV-2 in the tissues of clinically recovered patients and persistent immune symptoms in discharged patients for up to several months. Pregnant patients were shown to be a high-risk group for COVID-19. Based on these findings, we assessed SARS-CoV-2 nucleic acid and protein retention in the placentas of pregnant women who had fully recovered from COVID-19 and cytokine fluctuations in maternal and foetal tissues. MATERIALS AND METHODS: Remnant SARS-CoV-2 in the term placenta was detected using nucleic acid amplification and immunohistochemical staining of the SARS-CoV-2 protein. The infiltration of CD14+ macrophages into the placental villi was detected by immunostaining. The cytokines in the placenta, maternal plasma, neonatal umbilical cord, cord blood and amniotic fluid specimens at delivery were profiled using the Luminex assay. RESULTS: Residual SARS-CoV-2 nucleic acid and protein were detected in the term placentas of recovered pregnant women. The infiltration of CD14+ macrophages into the placental villi of the recovered pregnant women was higher than that in the controls. Furthermore, the cytokine levels in the placenta, maternal plasma, neonatal umbilical cord, cord blood and amniotic fluid specimens fluctuated significantly. CONCLUSIONS: Our study showed that SARS-CoV-2 nucleic acid (in one patient) and protein (in five patients) were present in the placentas of clinically recovered pregnant patients for more than 3 months after diagnosis. The immune responses induced by the virus may lead to prolonged and persistent symptoms in the maternal plasma, placenta, umbilical cord, cord blood and amniotic fluid.


Subject(s)
Cytokines/analysis , Placenta/virology , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Proteins/isolation & purification , Adult , Amniotic Fluid/chemistry , COVID-19/pathology , Female , Fetal Blood/chemistry , Humans , Infant, Newborn , Macrophages/immunology , Nucleic Acid Amplification Techniques , Placenta/immunology , Pregnancy , RNA, Viral/blood , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Viral Proteins/blood
4.
Am J Obstet Gynecol ; 225(3): 301.e1-301.e14, 2021 09.
Article in English | MEDLINE | ID: covidwho-1226265

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2, the disease-causing pathogen of the coronavirus disease 2019 pandemic, has resulted in morbidity and mortality worldwide. Pregnant women are more susceptible to severe coronavirus disease 2019 and are at higher risk of preterm birth than uninfected pregnant women. Despite this evidence, the immunologic effects of severe acute respiratory syndrome coronavirus 2 infection during pregnancy remain understudied. OBJECTIVE: This study aimed to assess the impact of severe acute respiratory syndrome coronavirus 2 infection during pregnancy on inflammatory and humoral responses in maternal and fetal samples and compare antibody responses to severe acute respiratory syndrome coronavirus 2 among pregnant and nonpregnant women. STUDY DESIGN: Immune responses to severe acute respiratory syndrome coronavirus 2 were analyzed using samples from pregnant (n=33) and nonpregnant (n=17) women who tested either positive (pregnant, 22; nonpregnant, 17) or negative for severe acute respiratory syndrome coronavirus 2 (pregnant, 11) at Johns Hopkins Hospital. We measured proinflammatory and placental cytokine messenger RNAs, neonatal Fc receptor expression, and tetanus antibody transfer in maternal and cord blood samples. In addition, we evaluated antispike immunoglobulin G, antispike receptor-binding domain immunoglobulin G, and neutralizing antibody responses to severe acute respiratory syndrome coronavirus 2 in serum or plasma collected from nonpregnant women, pregnant women, and cord blood. RESULTS: Pregnant women with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 infection expressed more interleukin-1 beta, but not interleukin 6, in blood samples collected within 14 days vs >14 days after performing severe acute respiratory syndrome coronavirus 2 test. Pregnant women with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 infection also had reduced antispike receptor-binding domain immunoglobulin G titers and were less likely to have detectable neutralizing antibody than nonpregnant women. Although severe acute respiratory syndrome coronavirus 2 infection did not disrupt neonatal Fc receptor expression in the placenta, maternal transfer of severe acute respiratory syndrome coronavirus 2 neutralizing antibody was inhibited by infection during pregnancy. CONCLUSION: Severe acute respiratory syndrome coronavirus 2 infection during pregnancy was characterized by placental inflammation and reduced antiviral antibody responses, which may impact the efficacy of coronavirus disease 2019 treatment in pregnancy. In addition, the long-term implications of placental inflammation for neonatal health require greater consideration.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Inflammation/virology , Interleukin-1beta/genetics , Pregnancy Complications/virology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , Arabidopsis Proteins/blood , COVID-19/complications , Female , Fetal Blood/chemistry , Gene Expression , Humans , Immunoglobulin G/blood , Interleukin-6/genetics , Membrane Proteins/blood , Placenta Diseases/virology , Pregnancy , Pregnancy Complications/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL